move to cargo-generate; start with QEMU

This commit is contained in:
Jorge Aparicio
2018-08-30 00:25:14 +02:00
parent 8a8466a560
commit 77a0685a17
19 changed files with 529 additions and 986 deletions

View File

@@ -1,5 +1,4 @@
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
# runner = 'arm-none-eabi-gdb -x debug.gdb'
rustflags = [
# LLD (shipped with the Rust toolchain) is used as the default linker
"-C", "link-arg=-Tlink.x",
@@ -16,23 +15,9 @@ rustflags = [
# "-C", "link-arg=-nostartfiles",
]
# work around rust-lang/cargo#5946
[target.thumbv6m-none-eabi]
runner = 'arm-none-eabi-gdb -x debug.gdb'
[target.thumbv7m-none-eabi]
runner = 'arm-none-eabi-gdb -x debug.gdb'
[target.thumbv7em-none-eabi]
runner = 'arm-none-eabi-gdb -x debug.gdb'
[target.thumbv7em-none-eabihf]
runner = 'arm-none-eabi-gdb -x debug.gdb'
# end of workaround
[build]
# Pick one of these compilation targets
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
# target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)

View File

@@ -1,13 +1,7 @@
[package]
authors = ["Jorge Aparicio <jorge@japaric.io>"]
categories = ["embedded", "no-std"]
description = "A template for building applications for ARM Cortex-M microcontrollers"
documentation = "https://rust-embedded.github.io/cortex-m-quickstart/cortex_m_quickstart"
keywords = ["arm", "cortex-m", "template"]
license = "MIT OR Apache-2.0"
name = "cortex-m-quickstart"
repository = "https://github.com/japaric/cortex-m-quickstart"
version = "0.3.4"
authors = ["{{authors}}"]
name = "{{project-name}}"
version = "0.1.0"
[dependencies]
cortex-m = "0.5.6"

487
README.md
View File

@@ -6,6 +6,493 @@ This project is developed and maintained by the [Cortex-M team][team].
# [Documentation](https://rust-embedded.github.io/cortex-m-quickstart/cortex_m_quickstart)
## Dependencies
To build embedded programs using this template you'll need:
- Nightly Rust toolchain from 2018-08-28 or newer: `rustup default nightly`
- The `cargo generate` subcommand: `cargo install cargo-generate`
- `rust-std` components (pre-compiled `core` crate) for the ARM Cortex-M
targets. Run:
``` console
$ rustup target add thumbv6m-none-eabi thumbv7m-none-eabi thumbv7em-none-eabi thumbv7em-none-eabihf
```
## Non-dependencies
This section list programs that are *not* required to build embedded programs
but are useful or necessary for embedded development.
To flash (put the firmware on the target device) and debug embedded programs
you'll need these additional programs:
<!-- TODO These bullets should link to the debugonomicon, which has instructions -->
<!-- on how to install these tools -->
- GDB with ARM support or LLDB, for debugging.
- QEMU with ARM support, for running embedded programs on the build machine.
- OpenOCD and similar, which make debugging possible at all.
To inspect the produced binaries you'll want [`cargo-binutils`].
[`cargo-binutils`]: https://crates.io/crates/cargo-binutils
## Usage
### First timers
#### Building
If you are already familiar with the process of building and debugging embedded
Rust programs feel free to skip this section!
To get you familiar with building and debugging embedded Rust programs we'll use
the template with its default values to build a program for the LM3S6965, a
microcontroller with a Cortex-M3 core that QEMU can emulate.
In this section we'll use a debugger (GDB or LLDB) and QEMU. Be sure to have
them installed!
1. Initialize the template
``` console
$ cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
```
2. Build the example "Hello, world!" program
``` rust
// example/hello.rs
#![no_main]
#![no_std]
#[macro_use]
extern crate cortex_m_rt;
extern crate cortex_m_semihosting as sh;
extern crate panic_semihosting;
use core::fmt::Write;
use sh::hio;
entry!(main);
fn main() -> ! {
let mut stdout = hio::hstdout().unwrap();
writeln!(stdout, "Hello, world!").unwrap();
loop {}
}
```
We'll cross compile the program for the `thumbv7m-none-eabi` target. This target
covers Cortex-M3 devices like the one we are targeting.
``` console
$ cargo build --target thumbv7m-none-eabi --example hello
```
You'll find the output binary in the following path:
`target/thumbv7m-none-eabi/debug/examples/hello`. The output is an ELF file.
If you have `file` installed you can print the file type of the output to
confirm it's an ELF file:
```
$ ( cd target/thumbv7m-none-eabi/debug/examples && file hello )
hello: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, with debug_info, not stripped
```
If you have `cargo-binutils` installed you can look at the ELF header of the
output:
> NOTE `cargo-readelf` will be available in a *future* release of binutils
> (v0.1.3)
``` console
$ cargo readelf --example hello -- --file-headers
```
``` text
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0x0
Type: EXEC (Executable file)
Machine: ARM
Version: 0x1
Entry point address: 0x23A3
Start of program headers: 52 (bytes into file)
Start of section headers: 673340 (bytes into file)
Flags: 0x5000200
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 2
Size of section headers: 40 (bytes)
Number of section headers: 21
Section header string table index: 19
```
If you look at the bottom of the Cargo configuration file (`.cargo/config`)
you'll see that the `thumbv7m-none-eabi` target has been set as the default
compilation target. This means that you do *not* need to pass the `--target`
flag to cross compile because it's already implied. So:
``` console
$ cargo build --example hello
```
Does the same as before.
3. There's no step 3! Your build is done, but for completeness let's look at how
to run this program on QEMU.
#### Running the program on QEMU
Execute this command and you are done.
``` console
$ qemu-system-arm \
-cpu cortex-m3 \
-machine lm3s6965evb \
-nographic \
-semihosting-config enable=on,target=native \
-kernel target/thumbv7m-none-eabi/debug/examples/hello
Hello, world!
```
The above command will block the terminal because the `hello` program never
ends! To terminate QEMU input this in your terminal: `Ctrl+A`, followed by `X`.
Let me break down that long command for you:
- `qemu-system-arm`. This is the QEMU emulator. There are a few variants of
these QEMU binaries; this one does full *system* emulation of *ARM* machines
-- hence the name.
- `-cpu cortex-m3`. This tells QEMU to emulate a Cortex-M3 CPU. Specifying the
CPU model lets us catch some miscompilation errors: for example, running a
program compiled for the Cortex-M4F, which has a hardware FPU, will make QEMU
error during its execution.
- `-machine lm3s6965evb`. This tells QEMU to emulate the LM3S6965EVB, a
evaluation board that contains a LM3S6965 microcontroller.
- `-nographic`. This tells QEMU to not launch its GUI.
- `-semihosting-config (..)`. This tells QEMU to enable semihosting. Semihosting
lets the emulated device, among other things, use the host stdout, stderr and
stdin and create files on the host.
- `-kernel $file`. This tells QEMU which binary to flash (kind of) and run on
the emulated machine.
#### Debugging
First, we launch a QEMU instance:
``` console
$ qemu-system-arm \
-cpu cortex-m3 \
-machine lm3s6965evb \
-nographic \
-semihosting-config enable=on,target=native \
-gdb tcp::3333 \
-S \
-kernel target/thumbv7m-none-eabi/debug/examples/hello
```
Note that this command won't print anything to the console but will block the
terminal. We have passed two extra flags this time:
- `-gdb tcp::3333`. This tells QEMU to wait for a GDB connection on TCP
port 3333.
- `-S`. This tells QEMU to freeze the machine at startup. Without this the
program would have reached the end of `main` before we had a chance to launch
the debugger!
Next, we start up LLDB in another terminal:
``` console
$ lldb target/thumbv7m-none-eabi/debug/examples/hello
```
And tell it to connect to the GDB server that QEMU created:
``` console
(lldb) gdb-remote 3333
Process 1 stopped
* thread #1, stop reason = signal SIGTRAP
frame #0: 0x000023a2 hello`Reset at lib.rs:475
472
473 #[doc(hidden)]
474 #[no_mangle]
-> 475 pub unsafe extern "C" fn Reset() -> ! {
476 extern "C" {
477 // This symbol will be provided by the user via the `entry!` macro
478 fn main() -> !;
```
You'll see that the process is halted and that the program counter is pointing
to a function named `Reset`. That is the reset handler: what Cortex-M cores
execute upon booting.
This reset handler will eventually call our `main` function. Let's skip all the
way there using a breakpoint and the `continue` command:
``` console
(lldb) breakpoint set -name hello::main
Breakpoint 1: where = hello`hello::main::h9cf19a1378cbd1b8 + 2 at hello.rs:20, address = 0x000006a8
(lldb) continue
Process 1 resuming
Process 1 stopped
* thread #1, stop reason = breakpoint 1.1
frame #0: 0x000006a8 hello`hello::main::h9cf19a1378cbd1b8 at hello.rs:20
17 entry!(main);
18
19 fn main() -> ! {
-> 20 let mut stdout = hio::hstdout().unwrap();
21 writeln!(stdout, "Hello, world!").unwrap();
22
23 loop {}
```
We are now close to the code that prints "Hello, world!". Let's move the program
forward using the `next` command.
``` console
(lldb) next
Process 1 stopped
* thread #1, stop reason = step over
frame #0: 0x000006be hello`hello::main::h9cf19a1378cbd1b8 at hello.rs:21
18
19 fn main() -> ! {
20 let mut stdout = hio::hstdout().unwrap();
-> 21 writeln!(stdout, "Hello, world!").unwrap();
22
23 loop {}
24 }
(lldb) next
Process 1 stopped
* thread #1, stop reason = step over
frame #0: 0x000006f6 hello`hello::main::h9cf19a1378cbd1b8 at hello.rs:23
20 let mut stdout = hio::hstdout().unwrap();
21 writeln!(stdout, "Hello, world!").unwrap();
22
-> 23 loop {}
24 }
```
At this point you should see "Hello, world!" printed on the terminal that's
running `qemu-system-arm`.
``` console
$ qemu-system-arm (..)
Hello, world!
```
That's it! You can now exit `lldb`, which will also cause QEMU to terminate.
```
(lldb) exit
Quitting LLDB will kill one or more processes. Do you really want to proceed: [Y/n] y
```
### Not first timers
#### Building
This section explains how to configure this template to build programs for some
specific Cortex-M device.
0. Before everything else, you need to know the characteristics of the target
device:
- What's the ARM core? e.g. Cortex-M3.
- Does the ARM core include an FPU? e.g. the Cortex-M4F does.
- How much Flash memory and RAM does the target device has? e.g. 40 KB of RAM
- Where is Flash memory and RAM mapped in the address space? e.g. `0x2000_0000`
is common for RAM.
You should be able to find this information in the data sheet and / or reference
manual of your device.
As an example, we'll use the [STM32F303VCT6] microcontroller. This device has:
[STM32F303VCT6]: https://www.st.com/en/microcontrollers/stm32f303vc.html
- a Cortex-M4F core that includes a single precision FPU
- 256 KB of Flash located at address `0x0800_0000`.
- 40 KB of RAM located at address `0x2000_0000`. (There's another RAM region but
for simplicity we'll ignore it).
1. Initialize the template
``` console
$ cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
```
2. Set the default compilation target in `.cargo/config`.
For the STM32F303VCT6, we pick the `thumbv7em-none-eabihf` target as that covers
the Cortex-M4F core.
``` console
$ tail .cargo/config
```
``` toml
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
```
3. Enter the memory region information into `memory.x`.
As we mentioned before the STM32F303VCT6 has 40 KB of RAM located at address
`0x2000_0000` and 256 KB of Flash memory located at address `0x0800_0000`.
``` console
$ cat memory.x
```
``` text
MEMORY
{
/* NOTE K = KiBi = 1024 bytes */
FLASH : ORIGIN = 0x08000000, LENGTH = 256K
RAM : ORIGIN = 0x20000000, LENGTH = 40K
}
```
4. Build one of the examples:
``` console
$ cargo build --example hello
```
You are done! You should be able to flash and run this example on your
device.
#### Debugging
Teaching you how to flash and debug this program on *your* device is out of
scope for this document due to the sheer variety of possible hardware / software
combinations. But the steps required to flash and debug this program on the
[STM32F3DISCOVERY] using OpenOCD are provided below as a reference.
[STM32F3DISCOVERY]: https://www.st.com/en/evaluation-tools/stm32f3discovery.html
On a terminal run `openocd` to connect to the ST-LINK on the discovery board.
Run this command from the root of the template; `openocd` will pick up the
`openocd.cfg` file which indicates which interface file and target file to use.
``` console
$ cat openocd.cfg
```
``` text
source [find interface/stlink-v2-1.cfg]
source [find target/stm32f3x.cfg]
```
``` console
$ openocd
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "hla_swd". To override use 'transport select <transport>'.
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Info : STLINK v2 JTAG v27 API v2 SWIM v15 VID 0x0483 PID 0x374B
Info : using stlink api v2
Info : Target voltage: 2.913879
Info : stm32f3x.cpu: hardware has 6 breakpoints, 4 watchpoints
```
On another terminal run GDB, also from the root of the template.
``` console
$ cat openocd.gdb
```
``` text
target remote :3333
# print demangled symbols
set print asm-demangle on
# detect unhandled exceptions and hard faults
break DefaultHandler
break UserHardFault
monitor arm semihosting enable
load
```
``` console
$ arm-none-eabi-gdb -x openocd.gdb target/thumbv7em-none-eabihf/debug/examples/hello
(..)
Loading section .vector_table, size 0x400 lma 0x8000000
Loading section .text, size 0x21dc lma 0x8000400
Loading section .rodata, size 0x6a4 lma 0x80025e0
Start address 0x800238c, load size 11392
Transfer rate: 17 KB/sec, 3797 bytes/write.
(gdb) list
470 #[no_mangle]
471 pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;
472
473 #[doc(hidden)]
474 #[no_mangle]
475 pub unsafe extern "C" fn Reset() -> ! {
476 extern "C" {
477 // This symbol will be provided by the user via the `entry!` macro
478 fn main() -> !;
479
```
The `openocd.gdb` script will connect GDB to OpenOCD and then flash the program
into the device. After that you can do a normal debugging session.
If you `continue` the program past the semihosting write operation you'll see
"Hello, world" printed on the OpenOCD console.
``` console
(gdb) continue
```
``` console
$ openocd
(..)
Hello, world!
```
## Next steps
> TODO point the reader to embedded-hal, awesome-embedded-rust, etc.
# License
Licensed under either of

View File

@@ -1,21 +0,0 @@
target remote :3333
# print demangled symbols by default
set print asm-demangle on
monitor arm semihosting enable
# # send captured ITM to the file itm.fifo
# # (the microcontroller SWO pin must be connected to the programmer SWO pin)
# # 8000000 must match the core clock frequency
# monitor tpiu config internal itm.fifo uart off 8000000
# # OR: make the microcontroller SWO pin output compatible with UART (8N1)
# # 2000000 is the frequency of the SWO pin
# monitor tpiu config external uart off 8000000 2000000
# # enable ITM port 0
# monitor itm port 0 on
load
step

View File

@@ -6,13 +6,12 @@
#![no_std]
#[macro_use]
extern crate cortex_m_rt as rt;
extern crate cortex_m_rt;
extern crate cortex_m_semihosting as sh;
extern crate panic_semihosting;
use core::fmt::Write;
use rt::ExceptionFrame;
use sh::hio;
entry!(main);
@@ -23,15 +22,3 @@ fn main() -> ! {
loop {}
}
exception!(HardFault, hard_fault);
fn hard_fault(ef: &ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
exception!(*, default_handler);
fn default_handler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}

View File

@@ -2,8 +2,9 @@ MEMORY
{
/* NOTE K = KiBi = 1024 bytes */
/* TODO Adjust these memory regions to match your device memory layout */
FLASH : ORIGIN = 0x000BAAD0, LENGTH = 0K
RAM : ORIGIN = 0xBAAD0000, LENGTH = 0K
/* These values correspond to the LM3S6965, one of the few devices QEMU can emulate */
FLASH : ORIGIN = 0x00000000, LENGTH = 256K
RAM : ORIGIN = 0x20000000, LENGTH = 64K
}
/* This is where the call stack will be allocated. */

2
openocd.cfg Normal file
View File

@@ -0,0 +1,2 @@
source [find interface/stlink-v2-1.cfg]
source [find target/stm32f3x.cfg]

12
openocd.gdb Normal file
View File

@@ -0,0 +1,12 @@
target remote :3333
# print demangled symbols
set print asm-demangle on
# detect unhandled exceptions and hard faults
break DefaultHandler
break UserHardFault
monitor arm semihosting enable
load

View File

@@ -1,67 +0,0 @@
//! Minimal Cortex-M program
//!
//! When executed this program will hit the breakpoint set in `main`.
//!
//! All Cortex-M programs need to:
//!
//! - Contain the `#![no_main]` and `#![no_std]` attributes. Embedded programs don't use the
//! standard Rust `main` interface or the Rust standard (`std`) library.
//!
//! - Define their entry point using [`entry!`] macro.
//!
//! [`entry!`]: https://docs.rs/cortex-m-rt/~0.5/cortex_m_rt/macro.entry.html
//!
//! - Define their panicking behavior, i.e. what happens when `panic!` is called. The easiest way to
//! define a panicking behavior is to link to a [panic handler crate][0]
//!
//! [0]: https://crates.io/keywords/panic-impl
//!
//! - Define the `HardFault` handler using the [`exception!`] macro. This handler (function) is
//! called when a hard fault exception is raised by the hardware.
//!
//! [`exception!`]: https://docs.rs/cortex-m-rt/~0.5/cortex_m_rt/macro..html
//!
//! - Define a default handler using the [`exception!`] macro. This function will be used to handle
//! all interrupts and exceptions which have not been assigned a specific handler.
//!
//! ```
//!
//! #![no_main] // <- IMPORTANT!
//! #![no_std]
//!
//! extern crate cortex_m;
//!
//! #[macro_use(entry, exception)]
//! extern crate cortex_m_rt as rt;
//!
//! // makes `panic!` print messages to the host stderr using semihosting
//! extern crate panic_semihosting;
//!
//! use cortex_m::asm;
//! use rt::ExceptionFrame;
//!
//! // the program entry point is ...
//! entry!(main);
//!
//! // ... this never ending function
//! fn main() -> ! {
//! loop {
//! asm::bkpt();
//! }
//! }
//!
//! // define the hard fault handler
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! // define the default exception handler
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,41 +0,0 @@
//! Prints "Hello, world!" on the OpenOCD console using semihosting
//!
//! ---
//!
//! ```
//!
//! #![no_main]
//! #![no_std]
//!
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate cortex_m_semihosting as sh;
//! extern crate panic_semihosting;
//!
//! use core::fmt::Write;
//!
//! use rt::ExceptionFrame;
//! use sh::hio;
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! let mut stdout = hio::hstdout().unwrap();
//! writeln!(stdout, "Hello, world!").unwrap();
//!
//! loop {}
//! }
//!
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,58 +0,0 @@
//! Sends "Hello, world!" through the ITM port 0
//!
//! ITM is much faster than semihosting. Like 4 orders of magnitude or so.
//!
//! **NOTE** Cortex-M0 chips don't support ITM.
//!
//! You'll have to connect the microcontroller's SWO pin to the SWD interface. Note that some
//! development boards don't provide this option.
//!
//! You'll need [`itmdump`] to receive the message on the host plus you'll need to uncomment two
//! `monitor` commands in the `.gdbinit` file.
//!
//! [`itmdump`]: https://docs.rs/itm/0.2.1/itm/
//!
//! ---
//!
//! ```
//!
//! #![no_main]
//! #![no_std]
//!
//! #[macro_use]
//! extern crate cortex_m;
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate panic_semihosting;
//!
//! use cortex_m::{asm, Peripherals};
//! use rt::ExceptionFrame;
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! let mut p = Peripherals::take().unwrap();
//! let stim = &mut p.ITM.stim[0];
//!
//! iprintln!(stim, "Hello, world!");
//!
//! loop {
//! asm::bkpt();
//! }
//! }
//!
//! // define the hard fault handler
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! // define the default exception handler
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,47 +0,0 @@
//! Changing the panic handler
//!
//! The easiest way to change the panic handler is to use a different [panic handler crate][0].
//!
//! [0]: https://crates.io/keywords/panic-impl
//!
//! ---
//!
//! ```
//!
//! #![no_main]
//! #![no_std]
//!
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//!
//! // Pick one of these two panic handlers:
//!
//! // Reports panic messages to the host stderr using semihosting
//! extern crate panic_semihosting;
//!
//! // Logs panic messages using the ITM (Instrumentation Trace Macrocell)
//! // extern crate panic_itm;
//!
//! use rt::ExceptionFrame;
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! panic!("Oops")
//! }
//!
//! // define the hard fault handler
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! // define the default exception handler
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,118 +0,0 @@
//! Debugging a crash (exception)
//!
//! Most crash conditions trigger a hard fault exception, whose handler is defined via
//! `exception!(HardFault, ..)`. The `HardFault` handler has access to the exception frame, a
//! snapshot of the CPU registers at the moment of the exception.
//!
//! This program crashes and the `HardFault` handler prints to the console the contents of the
//! `ExceptionFrame` and then triggers a breakpoint. From that breakpoint one can see the backtrace
//! that led to the exception.
//!
//! ``` text
//! (gdb) continue
//! Program received signal SIGTRAP, Trace/breakpoint trap.
//! __bkpt () at asm/bkpt.s:3
//! 3 bkpt
//!
//! (gdb) backtrace
//! #0 __bkpt () at asm/bkpt.s:3
//! #1 0x080030b4 in cortex_m::asm::bkpt () at $$/cortex-m-0.5.0/src/asm.rs:19
//! #2 rust_begin_unwind (args=..., file=..., line=99, col=5) at $$/panic-semihosting-0.2.0/src/lib.rs:87
//! #3 0x08001d06 in core::panicking::panic_fmt () at libcore/panicking.rs:71
//! #4 0x080004a6 in crash::hard_fault (ef=0x20004fa0) at examples/crash.rs:99
//! #5 0x08000548 in UserHardFault (ef=0x20004fa0) at <exception macros>:10
//! #6 0x0800093a in HardFault () at asm.s:5
//! Backtrace stopped: previous frame identical to this frame (corrupt stack?)
//! ```
//!
//! In the console output one will find the state of the Program Counter (PC) register at the time
//! of the exception.
//!
//! ``` text
//! panicked at 'HardFault at ExceptionFrame {
//! r0: 0x2fffffff,
//! r1: 0x2fffffff,
//! r2: 0x080051d4,
//! r3: 0x080051d4,
//! r12: 0x20000000,
//! lr: 0x08000435,
//! pc: 0x08000ab6,
//! xpsr: 0x61000000
//! }', examples/crash.rs:106:5
//! ```
//!
//! This register contains the address of the instruction that caused the exception. In GDB one can
//! disassemble the program around this address to observe the instruction that caused the
//! exception.
//!
//! ``` text
//! (gdb) disassemble/m 0x08000ab6
//! Dump of assembler code for function core::ptr::read_volatile:
//! 451 pub unsafe fn read_volatile<T>(src: *const T) -> T {
//! 0x08000aae <+0>: sub sp, #16
//! 0x08000ab0 <+2>: mov r1, r0
//! 0x08000ab2 <+4>: str r0, [sp, #8]
//!
//! 452 intrinsics::volatile_load(src)
//! 0x08000ab4 <+6>: ldr r0, [sp, #8]
//! -> 0x08000ab6 <+8>: ldr r0, [r0, #0]
//! 0x08000ab8 <+10>: str r0, [sp, #12]
//! 0x08000aba <+12>: ldr r0, [sp, #12]
//! 0x08000abc <+14>: str r1, [sp, #4]
//! 0x08000abe <+16>: str r0, [sp, #0]
//! 0x08000ac0 <+18>: b.n 0x8000ac2 <core::ptr::read_volatile+20>
//!
//! 453 }
//! 0x08000ac2 <+20>: ldr r0, [sp, #0]
//! 0x08000ac4 <+22>: add sp, #16
//! 0x08000ac6 <+24>: bx lr
//!
//! End of assembler dump.
//! ```
//!
//! `ldr r0, [r0, #0]` caused the exception. This instruction tried to load (read) a 32-bit word
//! from the address stored in the register `r0`. Looking again at the contents of `ExceptionFrame`
//! we see that the `r0` contained the address `0x2FFF_FFFF` when this instruction was executed.
//!
//! ---
//!
//! ```
//!
//! #![no_main]
//! #![no_std]
//!
//! extern crate cortex_m;
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate panic_semihosting;
//!
//! use core::ptr;
//!
//! use rt::ExceptionFrame;
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! unsafe {
//! // read an address outside of the RAM region; causes a HardFault exception
//! ptr::read_volatile(0x2FFF_FFFF as *const u32);
//! }
//!
//! loop {}
//! }
//!
//! // define the hard fault handler
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! // define the default exception handler
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,68 +0,0 @@
//! Overriding an exception handler
//!
//! You can override an exception handler using the [`exception!`][1] macro.
//!
//! [1]: https://docs.rs/cortex-m-rt/0.5.0/cortex_m_rt/macro.exception.html
//!
//! ---
//!
//! ```
//!
//! #![deny(unsafe_code)]
//! #![no_main]
//! #![no_std]
//!
//! extern crate cortex_m;
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate cortex_m_semihosting as sh;
//! extern crate panic_semihosting;
//!
//! use core::fmt::Write;
//!
//! use cortex_m::peripheral::syst::SystClkSource;
//! use cortex_m::Peripherals;
//! use rt::ExceptionFrame;
//! use sh::hio::{self, HStdout};
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! let p = Peripherals::take().unwrap();
//! let mut syst = p.SYST;
//!
//! // configures the system timer to trigger a SysTick exception every second
//! syst.set_clock_source(SystClkSource::Core);
//! syst.set_reload(8_000_000); // period = 1s
//! syst.enable_counter();
//! syst.enable_interrupt();
//!
//! loop {}
//! }
//!
//! // try commenting out this line: you'll end in `default_handler` instead of in `sys_tick`
//! exception!(SysTick, sys_tick, state: Option<HStdout> = None);
//!
//! fn sys_tick(state: &mut Option<HStdout>) {
//! if state.is_none() {
//! *state = Some(hio::hstdout().unwrap());
//! }
//!
//! if let Some(hstdout) = state.as_mut() {
//! hstdout.write_str(".").unwrap();
//! }
//! }
//!
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,79 +0,0 @@
//! How to use the heap and a dynamic memory allocator
//!
//! This example depends on the alloc-cortex-m crate so you'll have to add it to your Cargo.toml:
//!
//! ``` text
//! # or edit the Cargo.toml file manually
//! $ cargo add alloc-cortex-m
//! ```
//!
//! ---
//!
//! ```
//!
//! #![feature(alloc)]
//! #![feature(global_allocator)]
//! #![feature(lang_items)]
//! #![no_main]
//! #![no_std]
//!
//! // This is the allocator crate; you can use a different one
//! extern crate alloc_cortex_m;
//! #[macro_use]
//! extern crate alloc;
//! extern crate cortex_m;
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate cortex_m_semihosting as sh;
//! extern crate panic_semihosting;
//!
//! use core::fmt::Write;
//!
//! use alloc_cortex_m::CortexMHeap;
//! use cortex_m::asm;
//! use rt::ExceptionFrame;
//! use sh::hio;
//!
//! // this is the allocator the application will use
//! #[global_allocator]
//! static ALLOCATOR: CortexMHeap = CortexMHeap::empty();
//!
//! const HEAP_SIZE: usize = 1024; // in bytes
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! // Initialize the allocator BEFORE you use it
//! unsafe { ALLOCATOR.init(rt::heap_start() as usize, HEAP_SIZE) }
//!
//! // Growable array allocated on the heap
//! let xs = vec![0, 1, 2];
//!
//! let mut stdout = hio::hstdout().unwrap();
//! writeln!(stdout, "{:?}", xs).unwrap();
//!
//! loop {}
//! }
//!
//! // define what happens in an Out Of Memory (OOM) condition
//! #[lang = "oom"]
//! #[no_mangle]
//! pub fn rust_oom() -> ! {
//! asm::bkpt();
//!
//! loop {}
//! }
//!
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,93 +0,0 @@
//! Using a device crate
//!
//! Crates generated using [`svd2rust`] are referred to as device crates. These crates provide an
//! API to access the peripherals of a device.
//!
//! [`svd2rust`]: https://crates.io/crates/svd2rust
//!
//! Device crates also provide an `interrupt!` macro (behind the "rt" feature) to register interrupt
//! handlers.
//!
//! This example depends on the [`stm32f103xx`] crate so you'll have to add it to your Cargo.toml.
//!
//! [`stm32f103xx`]: https://crates.io/crates/stm32f103xx
//!
//! ```
//! $ edit Cargo.toml && tail $_
//! [dependencies.stm32f103xx]
//! features = ["rt"]
//! version = "0.10.0"
//! ```
//!
//! ---
//!
//! ```
//!
//! #![no_main]
//! #![no_std]
//!
//! extern crate cortex_m;
//! #[macro_use]
//! extern crate cortex_m_rt as rt;
//! extern crate cortex_m_semihosting as sh;
//! #[macro_use]
//! extern crate stm32f103xx;
//! extern crate panic_semihosting;
//!
//! use core::fmt::Write;
//!
//! use cortex_m::peripheral::syst::SystClkSource;
//! use rt::ExceptionFrame;
//! use sh::hio::{self, HStdout};
//! use stm32f103xx::Interrupt;
//!
//! entry!(main);
//!
//! fn main() -> ! {
//! let p = cortex_m::Peripherals::take().unwrap();
//!
//! let mut syst = p.SYST;
//! let mut nvic = p.NVIC;
//!
//! nvic.enable(Interrupt::EXTI0);
//!
//! // configure the system timer to wrap around every second
//! syst.set_clock_source(SystClkSource::Core);
//! syst.set_reload(8_000_000); // 1s
//! syst.enable_counter();
//!
//! loop {
//! // busy wait until the timer wraps around
//! while !syst.has_wrapped() {}
//!
//! // trigger the `EXTI0` interrupt
//! nvic.set_pending(Interrupt::EXTI0);
//! }
//! }
//!
//! // try commenting out this line: you'll end in `default_handler` instead of in `exti0`
//! interrupt!(EXTI0, exti0, state: Option<HStdout> = None);
//!
//! fn exti0(state: &mut Option<HStdout>) {
//! if state.is_none() {
//! *state = Some(hio::hstdout().unwrap());
//! }
//!
//! if let Some(hstdout) = state.as_mut() {
//! hstdout.write_str(".").unwrap();
//! }
//! }
//!
//! exception!(HardFault, hard_fault);
//!
//! fn hard_fault(ef: &ExceptionFrame) -> ! {
//! panic!("HardFault at {:#?}", ef);
//! }
//!
//! exception!(*, default_handler);
//!
//! fn default_handler(irqn: i16) {
//! panic!("Unhandled exception (IRQn = {})", irqn);
//! }
//! ```
// Auto-generated. Do not modify.

View File

@@ -1,10 +0,0 @@
//! Examples sorted in increasing degree of complexity
// Auto-generated. Do not modify.
pub mod _0_minimal;
pub mod _1_hello;
pub mod _2_itm;
pub mod _3_panic;
pub mod _4_crash;
pub mod _5_exception;
pub mod _6_allocator;
pub mod _7_device;

View File

@@ -1,342 +0,0 @@
//! A template for building applications for ARM Cortex-M microcontrollers
//!
//! # Dependencies
//!
//! - Nightly Rust toolchain from 2018-08-28 or newer: `rustup default nightly`
//! - Cargo `clone` subcommand: `cargo install cargo-clone`
//! - GDB: `sudo apt-get install gdb-arm-none-eabi` (on Ubuntu)
//! - OpenOCD: `sudo apt-get install OpenOCD` (on Ubuntu)
//! - [Optional] Cargo `add` subcommand: `cargo install cargo-edit`
//!
//! # Usage
//!
//! 0) Figure out the cross compilation *target* to use.
//!
//! - Use `thumbv6m-none-eabi` for ARM Cortex-M0 and Cortex-M0+
//! - Use `thumbv7m-none-eabi` for ARM Cortex-M3
//! - Use `thumbv7em-none-eabi` for ARM Cortex-M4 and Cortex-M7 (*no* FPU support)
//! - Use `thumbv7em-none-eabihf` for ARM Cortex-M4**F** and Cortex-M7**F** (*with* FPU support)
//!
//! 1) Install the `rust-std` component for your target, if you haven't done so already
//!
//! ``` console
//! $ rustup target add thumbv7em-none-eabihf
//! ```
//!
//! 2) Clone this crate
//!
//! ``` text
//! $ cargo clone cortex-m-quickstart --vers 0.3.4
//! ```
//!
//! 3) Change the crate name, author and version
//!
//! ``` text
//! $ edit Cargo.toml && head $_
//! [package]
//! authors = ["Jorge Aparicio <jorge@japaric.io>"]
//! name = "demo"
//! version = "0.1.0"
//! ```
//!
//! 4) Specify the memory layout of the target device
//!
//! **NOTE** board support crates sometimes provide this file for you (check the crate
//! documentation). If you are using one that does then remove *both* `memory.x` and `build.rs` from
//! the root of this crate.
//!
//! ``` text
//! $ cat >memory.x <<'EOF'
//! MEMORY
//! {
//! /* NOTE K = KiBi = 1024 bytes */
//! FLASH : ORIGIN = 0x08000000, LENGTH = 256K
//! RAM : ORIGIN = 0x20000000, LENGTH = 40K
//! }
//! EOF
//! ```
//!
//! 5) Optionally, set a default build target. This way you don't have to pass `--target` to each
//! Cargo invocation.
//!
//! ``` text
//! $ cat >>.cargo/config <<'EOF'
//! [build]
//! target = "thumbv7em-none-eabihf"
//! EOF
//! ```
//!
//! 6) Optionally, depend on a device, HAL implementation or a board support crate.
//!
//! ``` text
//! $ # add a device crate, OR
//! $ cargo add stm32f30x
//!
//! $ # add a HAL implementation crate, OR
//! $ cargo add stm32f30x-hal
//!
//! $ # add a board support crate
//! $ cargo add f3
//! ```
//!
//! 7) Write the application or start from one of the examples
//!
//! ``` text
//! $ rm -r src/* && cp examples/hello.rs src/main.rs
//! ```
//!
//! 8) Build the application
//!
//! ``` text
//! $ cargo build --release
//!
//! $ # sanity check
//! $ arm-none-eabi-readelf -A target/thumbv7em-none-eabihf/release/demo
//! Attribute Section: aeabi
//! File Attributes
//! Tag_conformance: "2.09"
//! Tag_CPU_arch: v7E-M
//! Tag_CPU_arch_profile: Microcontroller
//! Tag_THUMB_ISA_use: Thumb-2
//! Tag_FP_arch: VFPv4-D16
//! Tag_ABI_PCS_GOT_use: direct
//! Tag_ABI_FP_denormal: Needed
//! Tag_ABI_FP_exceptions: Needed
//! Tag_ABI_FP_number_model: IEEE 754
//! Tag_ABI_align_needed: 8-byte
//! Tag_ABI_align_preserved: 8-byte, except leaf SP
//! Tag_ABI_HardFP_use: SP only
//! Tag_ABI_VFP_args: VFP registers
//! Tag_ABI_optimization_goals: Aggressive Speed
//! Tag_CPU_unaligned_access: v6
//! Tag_FP_HP_extension: Allowed
//! Tag_ABI_FP_16bit_format: IEEE 754
//! ```
//!
//! 9) Flash and debug the program
//!
//! ``` text
//! $ # Launch OpenOCD on a terminal
//! $ openocd -f (..)
//! ```
//!
//! ``` text
//! $ # Start a debug session in another terminal
//! $ arm-none-eabi-gdb target/thumbv7em-none-eabihf/release/demo
//! ```
//!
//! Alternatively, you can use `cargo run` to build, flash and debug the program in a single step.
//!
//! ``` text
//! $ cargo run --example hello
//! > # drops you into a GDB session
//! ```
//!
//! # Examples
//!
//! Check the [examples module][examples]
//!
//! [examples]: ./examples/index.html
//!
//! # Troubleshooting
//!
//! This section contains fixes for common errors encountered when the
//! `cortex-m-quickstart` template is misused.
//!
//! ## Used the standard `main` interface
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! Compiling demo v0.1.0 (file:///home/japaric/tmp/demo)
//!
//! error: requires `start` lang_item
//! ```
//!
//! Solution: Use `#![no_main]` and `entry!` as shown in the [examples].
//!
//! ## Forgot to launch an OpenOCD instance
//!
//! Error message:
//!
//! ``` text
//! $ arm-none-eabi-gdb target/..
//! Reading symbols from hello...done.
//! .gdbinit:1: Error in sourced command file:
//! :3333: Connection timed out.
//! ```
//!
//! Solution: Launch OpenOCD on other terminal. See [Usage] section.
//!
//! [Usage]: ./index.html#usage
//!
//! ## Didn't modify the `memory.x` linker script
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! Compiling demo v0.1.0 (file:///home/japaric/tmp/demo)
//! error: linking with `rust-lld` failed: exit code: 1
//! |
//! = note: "rust-lld" "-flavor" "gnu" "-L" (..)
//! (..)
//! = note: rust-lld: error: section '.vector_table' will not fit in region 'FLASH': overflowed by X bytes
//! rust-lld: error: section '.vector_table' will not fit in region 'FLASH': overflowed by Y bytes
//! (..)
//! ```
//!
//! Solution: Specify your device memory layout in the `memory.x` linker script. See [Usage]
//! section.
//!
//! ## Didn't set a default build target and forgot to pass `--target` to Cargo
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! (..)
//! error: language item required, but not found: `eh_personality`
//!
//! error: aborting due to previous error
//! ```
//!
//! Solution: Set a default build target in the `.cargo/config` file (see [Usage] section), or call
//! Cargo with `--target` flag: `cargo build --target thumbv7em-none-eabi`.
//!
//! ## Overwrote the original `.cargo/config` file
//!
//! You won't get an error message but the output binary will be empty
//!
//! ``` text
//! $ cargo build && echo OK
//! OK
//!
//! $ size target/thumbv7m-none-eabi/debug/app
//! text data bss dec hex filename
//! 0 0 0 0 0 target/thumbv7m-none-eabi/debug/app
//! ```
//!
//! Solution: You probably overwrote the original `.cargo/config` instead of appending the default
//! build target (e.g. `cat >` instead of `cat >>`). The less error prone way to fix this is to
//! remove the `.cargo` directory, clone a new copy of the template and then copy the `.cargo`
//! directory from that fresh template into your current project. Don't forget to *append* the
//! default build target to `.cargo/config`.
//!
//! ## Called OpenOCD with wrong arguments
//!
//! Error message:
//!
//! ``` text
//! $ openocd -f ..
//! (..)
//! Error: open failed
//! in procedure 'init'
//! in procedure 'ocd_bouncer'
//! ```
//!
//! Solution: Correct the OpenOCD arguments. Check the `/usr/share/openocd/scripts` directory (exact
//! location varies per distribution / OS) for a list of scripts that can be used.
//!
//! ## Forgot to install the `rust-std` component
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! error[E0463]: can't find crate for `core`
//! |
//! = note: the `thumbv7m-none-eabi` target may not be installed
//! ```
//!
//! Solution: call `rustup target add thumbv7m-none-eabi` but with the name of your target
//!
//! ## Used an old nightly
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! Compiling cortex-m-rt v0.2.0
//! error[E0463]: can't find crate for `core`
//! |
//! = note: the `thumbv7em-none-eabihf` target may not be installed
//!
//! error: aborting due to previous error
//! ```
//!
//! Solution: Use a more recent nightly
//!
//! ## Used the stable toolchain
//!
//! Error message:
//!
//! ``` text
//! $ cargo build
//! error[E0463]: can't find crate for `core`
//! |
//! = note: the `thumbv7em-none-eabihf` target may not be installed
//! ```
//!
//! Solution: We are not there yet! Switch to the nightly toolchain with `rustup default nightly`.
//!
//! ## Used `gdb` instead of `arm-none-eabi-gdb`
//!
//! Error message:
//!
//! ``` text
//! $ gdb target/..
//! Reading symbols from hello...done.
//! warning: Architecture rejected target-supplied description
//! warning: Cannot convert floating-point register value to ..
//! value has been optimized out
//! Cannot write the dashboard
//! Traceback (most recent call last):
//! File "<string>", line 353, in render
//! File "<string>", line 846, in lines
//! gdb.error: Frame is invalid.
//! 0x00000000 in ?? ()
//! semihosting is enabled
//! Loading section .text, size 0xd88 lma 0x8000000
//! Start address 0x8000000, load size 3464
//! .gdbinit:6: Error in sourced command file:
//! Remote connection closed
//! ```
//!
//! Solution: Use `arm-none-eabi-gdb target/..`
//!
//! # Used a named piped for `itm.fifo`
//!
//! Error message:
//!
//! ``` text
//! $ cargo run [--example ..]
//!
//! Reading symbols from target/thumbv7em-none-eabihf/debug/cortex-m-quickstart...done.
//! cortex_m_rt::reset_handler ()
//! at $REGISTRY/cortex-m-rt-0.3.12/src/lib.rs:330
//! 330 unsafe extern "C" fn reset_handler() -> ! {
//! semihosting is enabled
//! Ignoring packet error, continuing...
//! Ignoring packet error, continuing...
//! ```
//!
//! Note that when you reach this point OpenOCD will become unresponsive and you'll have to kill it
//! and start a new OpenOCD process before you can invoke `cargo run` / start GDB.
//!
//! Cause: You uncommented the `monitor tpiu ..` line in `.gdbinit` and are using a named pipe to
//! receive the ITM data (i.e. you ran `mkfifo itm.fifo`). This error occurs when `itmdump -f
//! itm.fifo` (or equivalent, e.g. `cat itm.fifo`) is not running.
//!
//! Solution: Run `itmdump -f itm.fifo` (or equivalently `cat itm.fifo`) *before* invoking `cargo
//! run` / starting GDB. Note that sometimes `itmdump` will exit when the GDB session ends. In that
//! case you'll have to run `itmdump` before you start the next GDB session.
//!
//! Alternative solution: Use a plain text file instead of a named pipe. In this scenario you omit
//! the `mkfifo itm.dump` command. You can use `itmdump`'s *follow* mode (-F) to get named pipe like
//! output.
#![no_std]
pub mod examples;

19
src/main.rs Normal file
View File

@@ -0,0 +1,19 @@
#![no_main]
#![no_std]
extern crate cortex_m;
#[macro_use]
extern crate cortex_m_rt;
// TODO pick a panicking behavior
// extern crate panic_abort; // requires nightly
// extern crate panic_itm; // requires ITM support
// extern crate panic_semihosting; // requires a debugger
entry!(main);
fn main() -> ! {
loop {
// TODO your code goes here
}
}